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Chapter 4 

The Dissipation Theorem 

“…the divergences [in the virial expansion of transport coefficients] somehow 
implied that the whole classical picture of nonequilibrium statistical mechanics 
was wrong, that there was an essential nonanalytic, non-controlled feature in 
the theory, that defied “Boltzmann’s dream”.” 
 
E.G.D. Cohen, Am. J. Phys., 58,618(1990) 

 

4.1   Derivation of the Dissipation Theorem 

 

 We now derive the Dissipation Theorem, which shows that, as well as being the subject 

of the ESFT, the dissipation function is the central argument of both linear response theory 

(i.e. Green-Kubo theory) and nonlinear response theory.  This theorem was first derived in 

2008 [25,26]. 

 Taking the solution of the Lagrangian form of the phase continuity equation eq. 

(2.4.1,4), we can substitute for f(Γ,0)  using the definition of the time-integrated dissipation 

function (3.1.2), obtaining: 
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f (StΓ; t) = exp − ds Λ(SsΓ)
0
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∫⎡
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= f (StΓ;0)exp ds Ω(SsΓ
0
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⎤
⎦⎥
.

(4.1.1)

 

 

The first line is obtained from (2.4.1,4). The second line substitutes for  f (Γ;0)  using the 

definition of the dissipation function (3.1.2).  

 Equation (4.1.1) is valid for any Γ , so we map Γ → S− tΓ .  Then after this remapping, 

 

 

f (Γ,t) = f (Γ,0)exp ds Ω(SsS− tΓ
0

− t
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⎤
⎦⎥
,  (4.1.2)

 

 

where the second equality is obtained by introducing s ' = s − t  .  Replacing the dummy 

variables gives, 

 

 

f (Γ; t) = f (Γ;0)exp − ds Ω(SsΓ
0

− t

∫ )⎡
⎣⎢

⎤
⎦⎥

= f (Γ;0)exp ds Ω(S− sΓ
0

t

∫ )⎡
⎣⎢

⎤
⎦⎥

 (4.1.3) 

 

This result shows that the forward time propagator for the N-particle distribution function, 

 exp −iL(Γ)t[ ]  - see (2.4.7):   f (Γ;t) = exp[−iLt] f (Γ;0)   - has a very simple relation 
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(backwards in time) to exponential time integral of the dissipation function.  In fact (4.1.3) is a 

simpler equation. It only involves functions and their path integrals whereas (2.4.7) involves 

functions and exponential integrals of operators. 

 If we take (4.1.3) and differentiate it in time at a fixed point in phase space we see that 

 

 
  
∂ f (Γ;t)

∂t
= Ω(S− tΓ) f (Γ;t) = −iL(Γ) f (Γ;t)   (4.1.4) 

 

where we have used (2.4.6) to relate the time derivative of  f (Γ;t)  to the f-Liouvillean.  

Equation (4.1.4) shows there is a very simple relation between the dissipation function and the 

f-Liouville operator.  

  

 In the case of adiabatic (i.e. unthermostatted) dynamics for an ensemble that is initially a 

canonical ensemble, this result is equivalent to (7.2.8) of reference [25], which is the 

distribution function derived by Yamada and Kawasaki in 1967 [28].  However (20) is much 

more general and, like the ESFT, can be applied to any initial ensemble and any time 

reversible, and possibly thermostatted dynamics that satisfies AIΓ . For thermostatted 

dynamics driven by a dissipative field (4.1.4 was first derived by Evans and Morriss in 1984. 

 From eq. (4.1.4) we can calculate nonequilibrium ensemble averages in the Schrödinger 

representation 

 

  

 

 

B(t) Fe , f (Γ;0)
= dΓ

D
∫ B(Γ)exp[− ds

0

− t

∫ Ω(SsΓ)] f (Γ;0)

= B(0)exp[− ds
0

− t

∫ Ω(SsΓ)]
Fe , f (Γ;0)

, (4.1.5) 



 

4 

 

and by differentiating and integrating (4.1.5) with respect to time, we find that 

 

 

 

d B(t) Fe , f (Γ;0)

dt
= dΓ

D
∫ B(Γ)Ω(S− tΓ) f (Γ;t)

= dΓ
D
∫ B(StΓ)Ω(Γ) f (Γ;0)

= B(t)Ω(0) Fe , f (Γ;0)

  (4.1.6) 

 

If we integrate (4.1.6) in time we can write the averages in the Heisenberg representation as 

 

 B(t) Fe , f (Γ;0)
= B(0) f (Γ;0) + ds Ω(0)B(s)

0

t

∫ Fe , f (Γ;0)
. (4.1.7) 

 

 On both sides of eqs. (4.1.7,8,9) the time evolution is governed by the full field-

dependent, thermostatted equations of motion (2.2.5).  The derivation of eqs. (4.1.7,9) from 

the definition of the dissipation function (3.1.2), is called the Dissipation Theorem.  This 

Theorem is extremely general, and allows the determination of the ensemble average of an 

arbitrary phase function under very general conditions.  We require time reversible, 

autonomous dynamics; an initial distribution that is invariant under the time reversal map MT  

and we require ergodic consistency so that the dissipation function is non-singular. 

 Like the ESFT (4.1.5,7) are valid arbitrarily far from equilibrium.  Equation (4.1.5) can 

be obtained for time-dependent fields by including the explict time-dependence of Fe(t) , but 

(4.1.7) cannot [29].  As in the derivation of the ESFT the only unphysical terms in the 

derivation are the thermostatting terms within the wall region.  However, because these 
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thermostatting particles can be moved arbitrarily far from the system of interest, the precise 

mathematical details of the thermostat are unimportant.  Since the number of degrees of 

freedom in the reservoir is assumed to be much larger than that of the system of interest, the 

reservoir can always be assumed to be in thermodynamic equilibrium.  There is therefore no 

difficulty in defining the thermodynamic temperature of the walls.  This is in marked contrast 

with the system of interest, which may be very far from equilibrium where the thermodynamic 

temperature cannot be defined. 
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4.2 Equilibrium Distributions are preserved by their associated Dynamics 

 Equation (4.1.4) shows that if at time t, the dissipation is nonzero anywhere in the phase 

space domain, the distribution function is time dependent time. 

 

 
 
∃Γ∈D st Ω(StΓ) ≠ 0⇒ ∂ f (Γ;t)

∂t
= Ω(S− tΓ) f (Γ;t) ≠ 0   (4.2.1) 

 

and cannot be an equilibrium distribution function. Conversely if the distribution function is 

an equilibrium distribution at t=0, then from (4.1.4),  Ω(Γ) = 0,∀Γ∈D  and by (4.1.4)   

 

 
 

∂ feq (Γ;0)
∂t

= Ωeq (Γ) feq (Γ;0) = 0, ∀Γ∈D  (4.2.2)  

 

and the distribution function will stay an equilibrium distribution function forever. This means 

that if the distribution starts in equilibrium, the distribution will be unchanging  

 

  feq (Γ;t) = feq (Γ;0),∀Γ∈D,t   (4.2.3) 

 

and the time integrated dissipation will be zero for all time. By equation (3.7.1) this system is 

a time independent equilibrium system. So having zero instantaneous dissipation everywhere 

in D at t=0 guarantees the time integrated dissipation is zero forever. Once you start in 

equilibrium you remain in equilibrium! 

 Furthermore using (4.2.1), the only unchanging distribution functions are equilibrium 

distributions where the dissipation is identically zero everywhere in the ostensible phase space 

domain. Thus distributions that are, over some specified domain D, at equilibrium with respect 

to their specified dynamics, are time independent at every point in phase space!   
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Definition 

This gives us a new definition of equilibrium systems. Equilibrium systems are those 

combinations of dynamics and phase space distribution for which  

 

  Ωeq (Γ) = 0,∀Γ∈D . (4.2.4) 

 

This is a simple restatement of our original definition (3.7.1) that involved time integrals of 

dissipation. Our new definition involves the instantaneous dissipation.  

Notes:  

• Although the partial derivative of the equilibrium distribution function with respect to 

time is zero, the streaming derivative of an equilibrium distribution function is not necessarily 

zero.  As we will see in Chapter 6 for isochoric constant energy systems the streaming 

derivative is zero but for any equilibrium system that exchanges heat with its surroundings 

dfeq / dt ≠ 0 . For thermostatted equilibrium systems the time averaged streaming derivative is 

zero however. 

• Although the Dissipation Theorem shows that an equilibrium distribution is preserved 

by its dynamics  feq (Γ) , we do not yet know whether the equilibrium distribution is unique or 

whether it is stable with respect to small perturbations.  Neither do we know whether arbitrary 

initial distributions will relax to equilibrium at long times.  We will return to discuss these 

issues in the following chapter. 

• Equation (4.1.3) shows that for all nonequilibrium deterministic systems, the N-particle 

distribution function has explicit time dependence:  fne(Γ;t) .  This automatically means that 

nonequilibrium steady state distributions cannot be written in a closed, time-stationary form, 
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fne(Γ) ≠
exp[−F(Γ)]
dΓ exp[−F(Γ)]

D
∫

 (4.2.4) 

 

for some real  F(Γ) . If (4.2.3) were possible,  

 

 
 

∂ fne(Γ)
∂t

= 0 = Ω(S− tΓ) fne(Γ,t),∀t,Γ∈D  (4.2.5) 

 

The only way this could happen would be if  Ω(Γ) = 0,∀Γ∈D .  But this implies that the 

distribution is in fact an equilibrium distribution, which is a contradiction. Consequently 

equations (4.2.4) and (4.2.5) are impossible.  

 The Jaynes information theory approach to nonequilibrium steady hypothesizes closed 

forms like (4.2.4) for nonequilibrium steady state distributions. From equation (4.2.4) these 

can at most only be approximations! They cannot possibly be exact. 

 In writing (4.2.4) we exclude the case where we discontinuously change the dynamics 

therefore instantaneously changing the form of the equilibrium distribution. In such a case the 

initial distribution is an equilibrium distribution for the prior dynamics ( t ≤ 0 ) but is a 

nonequilibrium distribution for the subsequent ( t > 0 ) dynamics.  

• As noted in §2.5, in nonequilibrium steady states the distribution function collapses 

forever towards a steady state attractor of lower dimension than that of the embedding phase 

space. Therefore although averages of smooth phase functions are time independent, in 

nonequilibrium steady states the distribution function and its associated Gibbs entropy are not 

constant.  The Gibbs entropy is of course not the average of a simple phase function but rather 

can be expressed as the ensemble average of the logarithm of the phase space density.  The 

average of the phase function becomes time independent at sufficiently long times but the 

Gibbs entropy itself diverges linearly in time towards negative infinity. 
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4.3 Broad characterization of nonequilibrium systems: Driven, Equilibrating and T-

mixing systems 

Definition 

 A driven system is a system of interacting particles, possibly thermostatted in some way, 

subject to an external field Fe  (or possibly asymmetric boundary condition). For times up to 

zero the system is in an equilibrium distribution with respect to the zero field dynamics. The 

field dependent dynamics satisfies AIΓ . Because the zero field system is at equilibrium with 

respect to the zero field dynamics, the dissipative field is solely responsible for the dissipation.  

Definition 

For driven systems the dissipative field Fe , is defined by the equation, 

 

  Ω(Γ) ≡ −[βJ ](Γ)VFe  (4.3.1) 

 
where V  is the system volume, and  [βJ ](Γ)  is simply the dissipation divided by the volume 

and the dissipative field.  

Definition 

 We often refer to (4.3.1) as the primary dissipation function for the external field Fe . 

When the field is zero there is no dissipation. 

Definition 

 The dissipative field could be a mechanical field appearing in the equations of motion 

(e.g. an electric field applied to an electrical conductor, or it could be the strain rate appearing 

in the SLLOD equations of motion).  

Definition 

 The dissipative field could be thermodynamic field (e.g. a velocity or temperature 

difference between moving walls that sandwich the system of interest). Thermodynamic fields 
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are associated with boundary conditions. These boundary conditions do not usually appear in 

the actual equations of motion for the atoms or molecules comprising the system. As we have 

seen the SLLOD equations of motion have the characteristics both of a mechanical dissipative 

process and a thermal transport process. The equations of motion refer explicitly to the field 

but the boundary conditions also refer to the field. This points out that although thermal and 

mechanical dissipative processes look profoundly different, at a deeper level there are 

similarities between the two types of field. 

 Sllod is not autonomous but the nonautonomous terms rapidly decrease with system size 

in systems with short ranged interatomic potentials. 

 Without loss of generality we define the dissipative field so that the dissipation function 

is a linear functional of that field. If the disspation is explicitly quadratic in some external 

physical field we just define the dissipative field to be that quadratic physical field.  The 

dissipative field in (4.3.1) is undefined up to some scalar factor.  This has no serious 

mathematical consequences however, because this factor can be simply absorbed into the 

factor [βJ ] . 

 In order to specify  [βJ ](Γ)  further we need to look at the explicit form for the initial 

distribution and the dynamics. In Chapter 2 we showed that for for systems whose equations 

of motion are given by (2.2.5) β = 1 / kBTth  where Tth  was the target temperature of the Nose-

Hoover thermostatted reservoir which as will be shown in Chapter 6, is equal to the 

equilibrium thermodynamic temperature of that the entire system will relax to, if the 

dissipative field is set to zero and the entire system is allowed sufficient time to relax towards 

equilibrium.   

 For ergostatted systems β  is not constant and is instead the reciprocal of the 

instantaneous kinetic temperaure of the ergostatted particles times Boltzmann’s constant. This 

kinetic temperature is not a constant of the motion for constant energy dynamics.  
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 Analogous statements are made if the thermostat is in fact an isokinetic thermostat. In 

this case β   is the reciprocal of the constant kinetic temperature multiplied by Boltzmann’s 

constant. Again if the dissipative field is set to zero this kinetic temperature is the equilibrium 

thermodynamic temperature the system will relax to if the dissipative field is set to zero and 

the system is allowed to relax. 

 For all driven systems equation that are at equilibrium when the dissipative field is zero, 

(4.1.8) can be written as the Transient Time Correlation function expression, [25] for the 

thermostatted nonlinear response of the phase variable B to the dissipative field Fe :   

 

 B(t) Fe , f (Γ;0)
= B(0) f (Γ;0) −V ds [βJ ](0)B(s)

0

t

∫ Fe , f (Γ;0)
Fe . (4.3.4) 

 

Definition 

The Transient Time Correlation Function (TTCF) eq. (4.3.4) has been used frequently to 

compute the nonlinear transport behaviour of systems over extremely wide ranges of the 

applied field [30-36].  It is exact arbitrarily far from equilibrium and for systems of arbitrary 

size. It applies to systems that are driven by mechanical fields that appear directly in the 

equations of motion and also to boundary driven systems where it is the boundary conditions 

that prevent the system from being in quilibrium. 

 

Definition 

A system is said to be Transient, or T-Mixing over a phase space domain D, if ensemble 

averages over domain D of the transient time correlation functions  B(Γ(s))Ω(Γ(0)) , go to 

zero at long times sufficiently rapidly, that their time integrals, converge to a constant finite 
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value, as the integration time goes to infinity.  Since the average of phase functions is not 

necessarily zero B(s) ≠ 0 , the T-mixing condition requires that 

 

 Ω(0) = 0  (4.3.5) 

 
and for driven systems, 

 

 [βJ ](0) = 0 . (4.3.6) 

 

At this stage we do not know whether T-mixing equilibrating systems exist and if the do, we 

do not yet know what any necessary conditions are. We have already seen that for driven 

systems (4.3.6) always holds. 

 The dissipation function is odd under the time reversal mapping and since our initial 

distributions are always invariant under the time reversal mapping, (4.3.5) always holds. We 

can make some further remarks about (4.3.6). For isotropic fluids at equilibrium in the absence 

of external fields (4.3.6) will hold if the dissipative flux is a tensor or pseudo tensor of rank 1 

or higher. It will also hold if the dissipative flux is odd under the time reversal map MT  or if 

it is a pseudo scalar. Only if the dissipative flux is a polar scalar tensor could (4.3.6) fail to 

hold. If (4.3.6) does not hold the system cannot be T-mixing and we do not treat such systems 

in this book. 

 T-mixing is more general than the more common mixing condition. Mixing is for 

correlation functions over stationary distributions such as equilibrium distributions. 

 

Definition 
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An equilibrating system is a system that evolves under zero-field dynamics, possibly in 

contact with some form of thermostat. Initially the system is not in equilibrium with respect to 

the zero field dynamics. The initial form of the distribution is entirely responsible for 

dissipation.  

 If the dissipative field is nonzero, the ensemble averaged and time averaged dissipation 

is, as the Second Law Inequality shows, always strictly positive and the dissipation must be, to 

leading order, quadratic in the dissipative field.  The means if the ensembled averaged steady 

state dissipation is analytic in the field, as expected for finite times in finite systems with 

continuous dynamics, and the system is driven 

 

 
 
lim
Fe→0

[βJ ](t) Fe , f (Γ,0)
=O(Fe ),∀t . (4.3.7) 

 

It is possible that this leading order term vanishes because of some symmetry of the system in 

which case the leading term would be cubic in the field. Since at t=0, the distribution has had 

no time to adjust to the sudden presence of the field (it was turned on at time zero), we see that 

for driven systems, 

 

 
 
[βJ ](0) Fe , f (Γ,0)

= 0  (4.3.8) 

 

Equation (4.3.3) is for driven systems, a simple but very powerful result. Note: we assume 

here that Fe(t) = 0,∀t < 0 . We do not treat the case where Fe(t) = a,t < 0;Fe = b,t > 0 for two 

constants a,b.  

 For small fields and small systems, the averages of field-induced properties of the 

system are often swamped by noise from naturally occuring fluctuations. This makes direct 

calculation of the left hand side of (4.3.4) problematic.  This is particularly relevent in 
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calculation of the transport coefficient which can be obtained from ratio of the flux to the 

field.  The TTCF can be applied at any field strength, even zero where it reduces to the Green-

Kubo expression for the linear response: 

 

 lim
Fe→0

B(t) Fe , f (Γ;0)
= B(0) f (Γ;0) −V ds [βJ ](0)B(s)

0

t

∫ Fe=0, f (Γ;0)
Fe  (4.3.9) 

 

where ensemble average on the right hand side is an equilibrium ensemble average and the 

dynamics used to compute  B(s) ≡ B(S
sΓ)  is the zero field possibly thermostatted dynamics. 

This is in marked contrast to equation (4.3.4) where everything is computed with the 

dissipative field applied. 

 

Note: we could consider systems that are being driven by a dissipative field but that are not 

initially at equilibrium with respect to the zero field dynamics. For simplicity we rarely 

consider such mixed systems in this book. 

 

 

 

Two Trivial Corollaries of the Dissipation Theorem 

 Two trivial consequences follow for systems that are T-mixing over the specified phase 

space domain. These systems have two properties: 

a.   they are physically ergodic over the specified phase space domain at long times and 

b. they have time independent ensemble averaged values for all smooth phase functions at 

long times.  

 These results are true for systems that are driven or equilibrating. 
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If the system is T-mixing, obviously we have convergent integrals for (4.1.7,8) and a 

convergent value for the difference in the ensemble average of all smooth, phase variables.  If 

we assume the system was not physically ergodic then we could form time correlation 

functions involving phase functions that change their values depending on whether you are, or 

are not, in some ergodic subdomain of the full nonergodic domain: D.  If the system is not 

ergodic, by definition these correlation functions never decay. This is a contradiction.  

Therefore the system is physically ergodic.   

 Why do we expect correlation functions (4.1.7), (4.3.4) go to zero at long times? Two 

things happen. Firstly, as we have seen if the system is T-mixing either (4.3.5) or (4.3.6) 

holds.  

 Secondly in many (but not all!) systems, correlation functions of zero mean quanities go 

to zero at long times.  [This is guranteed if the system is T-mixing.] At late times these 

systems loose “memory” of their initial average value for the phase functions appearing in the 

correlation function. Note: this loss of “memory” has no connection with Lyapunov instability 

or the Kolmogorov-Sinai entropy – as the argument below shows. 

 From (4.3.5,6) we have A(0) = 0  and many time correlation functions decorrelate over 

time and we have 

 

 lim
t→∞

A(0)B(t) = A(0) lim
t→∞

B(t) = 0 . (4.3.8) 

 

The time correlation function appearing in (4.3.8) is not necessarily an equilibrium or steady 

state correlation function.  It may be a transient time correlation function as in (4.1.8). Systems 

that do not loose correlations are generally integrable (e.g. undamped systems of harmonic 

oscillators).  
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 Our definition of T-mixing is in fact stronger than (4.3.8). It requires that the 

correlations vanish sufficiently rapidly that the time integrals converge (4.1.5) to finite values.  

They must decay faster than t −1 . For equilibrium systems in two dimensions, autocorrelation 

functions of particle velocity, shear stress and heat flux evaluated in the limit of large system 

size, are all thought to have divergent time integrals because of the so-called long time tails. In 

three dimensions the corresponding equilibrium autocorrelation functions are thought to decay 

asymptotically as t −3/2 , fulfilling the T-mixing convergence criterion. 

 Historically there has been a lot of interest in systems at the border line of being mixing 

or T-mixing. The famous Fermi-Pasta-Ulam system which is a chain of anharmonic oscillators 

where the degree of anharmonicity can be controlled, are right at the border line of T-mixing.  

They are thought not to be mixing. 

 


